If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2+8u-2=0
a = 8; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·8·(-2)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{2}}{2*8}=\frac{-8-8\sqrt{2}}{16} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{2}}{2*8}=\frac{-8+8\sqrt{2}}{16} $
| (10x-1)=31° | | (3x-10)=2x=115 | | 5x+12+3x+6=90 | | 6t^2+9t+3=0 | | 2u+30=-2(u-1) | | 7x-4=10x-4 | | –4−6y=–5y | | z=3•60 | | -1(5x-2)=(-x)+10 | | 0.2(x-3)=12 | | –9z=–8z+8 | | 6x+25+2x3=180 | | 14x+84=20x+180 | | 90+2x+15+×=180 | | 5x+16+3x+4=90 | | 3(2x+3)+3=30 | | 22−3m=4 | | -21+7x-3x=27 | | 6n=14=4n+6 | | -2/7=-9n-7/7 | | +133+4x=9x | | 9(x+8)=3(x+30) | | 9x-15+5x+29=180 | | -4x-3=5x+6 | | 52=w−29 | | 9x4=18+ | | n+130+130=180 | | (6x+1)+84=90 | | H(t)=-16t^2-81t-5 | | 0.6=x/7 | | n+120+120=180 | | h/8=26 |